Timer IC circuit separates rep rate and duty cycle control

by Arturo Sancholuz Laboratorio Nacional de Hidraulica, Caracas, Venezuela

Combining both halves of a 556 dual timer with an operational amplifier in this simple circuit enables independent control of the output frequency and the duty cycle. The frequency is adjustable throughout the normal 10-hertz-to-10-kilohertz range of the 556, and the duty cycle is selectable from 1% to 99% of the total waveform period.

As shown in the figure, one half of the 556 (A_1) is connected as an astable multivibrator, oscillating at a frequency given by $f = 1.4/(R_1 + R_2)C$. This oscillator is the frequency-governing element in the circuit.

The negative-going edge of signal v_1 periodically triggers timer A_2 , which operates as a monostable multivibrator. An exponential ramp emanating from the threshold port of A_1 drives A_2 through the 531 op amp.

The duty cycle in this timer is determined not by

external resistance-capacitance elements, but by the voltage on the threshold port. The output of A_2 will remain high if the threshold voltage stays below two thirds of the supply voltage, $V_{\rm cc}$. This circuit can generate a dc offset voltage at the port to modify the threshold-switching time.

The voltage at the threshold port is determined by the two input voltages, v_2 and v_3 , at the summing junction. Thus:

$$v_4 = v_2 \left(\frac{R_5}{R_5 + R_6} \right) + v_3 \left(\frac{R_6}{R_5 + R_6} \right)$$

Voltage v_2 is an exponential ramp resulting from charging C through resistances R_1 and R_2 . The boundaries of the signal, determined by the internal comparators of A_1 , lie between $\frac{1}{3}$ V_{cc} and $\frac{2}{3}$ V_{cc} .

The 531 op amp is a buffer for the high-impedance A_2 signal and prevents current from flowing into the timing port, which could charge C from V_{cc} through R_5 and R_6 . Dc voltage v_3 can be varied from $^{2/3}$ V_{cc} to V_{cc} . Thus it can be seen that R_3 will determine how large a dc voltage is superimposed on v_2 , thereby controlling the duty cycle. Since there are no feedback loops linking A_1 and A_2 , it is clear that frequency and duty cycle adjustments are independent.

No relation. A_1 runs at frequency set by B_1 . But duty cycle is selected by B_3 , which controls signal offset at threshold port of A_2 . No feedback loops link A_1 and A_2 , thereby ensuring independent adjustment of rep rate and duty cycle. Timing diagram details operation.